Essays on Economic Mobility
Essays on Economic Mobility

Gaston Yalonetzky
Oriel College, Oxford
July, 2008

Thesis submitted for the Degree of Doctor of Philosophy in Economics
at the University of Oxford
Table of Contents

List of Tables………………………………………………………………………….4

List of Figures……………………………………………………………………...8

Acknowledgments…………………………………………………………………...11

Statement of Ownership and Word Count…………………………………………14

I. Introduction………………………………………………………………………15

II. The mobility implications of the full-risk-insurance hypothesis and measurement error: an application to Peru……………………………38

1. Introduction……………………………………………………………………...39
2. Conceptual framework…………………………………………………………46
3. Data……………………………………………………………………………66
4. Results…………………………………………………………………………69
5. Conclusions………………………………………………………………….77
6. Appendix 1…………………………………………………………………..101
7. References………………………………………………………………….104

III. Mobility comparisons in Markov-chain models: an application to consumption dynamics in Peru………………………………………..109

1. Introduction…………………………………………………………………...110
2. Conceptual framework………………………………………………………115
3. Specific methodological details of the empirical application……….139
4. Data……………………………………………………………………………141
5. Results…………………………………………………………………………144
6. Conclusions………………………………………………………………….148
7. Appendix 1…………………………………………………………………..154
8. Appendix 2…………………………………………………………………..157
9. Appendix 3…………………………………………………………………..162
10. Appendix 4…………………………………………………………………169
11. Appendix 5…………………………………………………………………170
12. References………………………………………………………………..175

IV. The effect of cohort heterogeneity on comparisons of homogeneity and long-term educational prospects: the case of Peru………………...…185

1. Introduction……………………………………………………………………...186
2. Conceptual framework………………………………………………………193
3. Data……………………………………………………………………………209
4. Results…………………………………………………………………………213
5. Conclusions………………………………………………………………….221
6. Appendix 1…………………………………………………………………..241
7. References…………………………………………………………………..248

V. Conclusions……………………………………………………………………..256
List of Tables

From “The mobility implications of the full-risk-insurance hypothesis and measurement error: an application to Peru”:

Table 3.1 Descriptive statistics of log monthly per capita consumption, panel 1998-2001

Table 3.2. Geographic distribution: panel households versus respective cross-sections

Table 3.3. Comparisons of year-pair rank correlation coefficients of actual consumption estimated with different panel dataset

Table 4.1. Descriptive statistics of the immobile component of log per capita consumption

Table 4.2. Test results for 1998-1999. Ho: $\rho_{t,t+1}^C = \rho_{t,t+1}^C$

Table 4.3. Test results for 1999-2000. Ho: $\rho_{t,t+1}^C = \rho_{t,t+1}^C$

Table 4.4. Test results for 2000-2001. Ho: $\rho_{t,t+1}^C = \rho_{t,t+1}^C$

Table 4.5. Test results using the parameters of the Polish error covariance matrix as estimated by Luttmer (2002). Ho: $\rho_{t,t+1}^C = \rho_{t,t+1}^C$

Table 4.6. Test results for 1998-1999. Ho: $\rho_{t,t+1}^C = \rho_{t,t+1}^C$

Table 4.7. Test results for 1999-2000. Ho: $\rho_{t,t+1}^C = \rho_{t,t+1}^C$

Table 4.8. Test results for 2000-2001. Ho: $\rho_{t,t+1}^C = \rho_{t,t+1}^C$

Table 4.9. Test results using the parameters of the Russian error covariance matrix as estimated by Luttmer (2002). Ho: $\rho_{t,t+1}^C = \rho_{t,t+1}^C$

Table 4.10. Test results using the parameters of the Canadian error covariance matrix as estimated by Ahmed et. al. (2007). Ho: $\rho_{t,t+1}^C = \rho_{t,t+1}^C$

Table 4.11. Values for the intercept on the μ axis and the asymptote on the ρ axis of Figure 2.2

Table 4.12. Test results with the AR(1) measurement errors for 2000-2001. Ho: $\rho_{t,t+1}^C = \rho_{t,t+1}^C$
Table 4.13. Test results with the AR(1) measurement errors for 1999-2001. Ho: $\rho_{t+1} = \rho_t$..91

Table 4.14. Test results with the AR(1) measurement errors for 1998-2001. Ho: $\rho_{t+1} = \rho_t$..92

Table 4.15. Test results with the AR(1) measurement errors for 1999-2000. Ho: $\rho_{t+1} = \rho_t$..93

Table 4.16. Test results with the AR(1) measurement errors for 1998-2000. Ho: $\rho_{t+1} = \rho_t$..94

Table 4.17. Test results with the AR(1) measurement errors for 1998-1999. Ho: $\rho_{t+1} = \rho_t$..95

Table 4.18. Equilibrium values for (f, ρ) satisfying equations (18) and (19) when the Canadian noise-to-signal ratio, $r = 2.63158$, as estimated by Ahmed et. al. (2007), is applied to the Peruvian data.................................95

Table 4.19. Test results for with the AR(1) measurement errors and the Canadian noise-to-signal ratio, as estimate by Ahmed et. al. (2007) for values of (f, ρ) satisfying condition (16). Ho: $\rho_{t+1} = \rho_t$..96

From “Mobility comparisons in Markov-chain models: an application to consumption dynamics in Peru”

Table 2.1. Percentage of times in which the p-value of the homogeneity test is higher than 0.05 (95% confidence)...129

Table 5.1. Optimal Order of Markov models. Samples of Peruvian household consumption data...145

Table 5.2. Optimal Order of Markov models for homogeneity tests and mobility comparisons. Samples of Peruvian household consumption data.............145

Table 5.3. Homogeneity test results. Samples of to Peruvian household consumption data...146

Table 5.4. Mobility test results using Prais-based indices. Samples of Peruvian household consumption data...147

Table A2.1. Sample sizes...157

Table A2.2. Descriptive statistics...158

Table A2.3. Auto-correlations of log per capita income...159
Table A2.4. Poverty lines

Table A2.5 Intermediate boundaries of the states for the order-of-the-chain tests (in logs of per capita consumption)

Table A2.6 Intermediate boundaries of the states for the homogeneity and mobility tests (in logs of per capita consumption)

Table A3. 3. Tests of the order of the chain. Ho: second order

Table A3. 4. Stationarity tests of the second-order chains

Table A3. 5. Homogeneity tests of second-order chains

Table A3. 6. Homogeneity tests of third-order chains

Tables A3.7 and A3.8. Prais indices of second-order chains

Tables A3.9. through A3.11. Prais indices of third-order chains

Table A4. 1. Homogeneity tests of second-order chains with simulated samples: Native sample multiplied by 2

Table A4. 2. Homogeneity tests of third-order chains with simulated samples: Native sample multiplied by 2

From “The effect of cohort heterogeneity on comparisons of homogeneity and long-term educational prospects: the case of Peru”

Table 2.1. Samples for cohort homogeneity tests

Table 2.2. Samples for cross-group homogeneity tests

Table 2.3. Samples for long-term distribution comparisons

Table 3.3. Cohort definitions

Table 3.4. Sample sizes

Table 4.1 Numbers of cohorts (from youngest to oldest) which can be pooled before a break in the Markov chain is found (at 99% level)

Table 4.2. Homogeneity test results for sub-population groups
Table 4.3. Homogeneity test results for sub-population groups (nativity according to mother tongue)………………………………………………………………………………232

Table 4.4. Homogeneity test results for sub-population groups (nativity according to self-identification)………………………………………………………………232

Table 4.5a. First-order stochastic dominance of current distributions. Z-scores……………………………………………………………………………………233

Table 4.5b. First-order stochastic dominance of current distributions. Z-scores……………………………………………………………………………………233

Table 4.6. Stochastic dominance of equilibrium distributions between male and female heads. Simulation results……………………………………………………234

Table 4.7. Stochastic dominance of equilibrium distributions between male and female overall samples. Simulation results…………………………………………235

Table 4.8. Stochastic dominance of equilibrium distributions between male and female urban samples. Simulation results…………………………………………236

Table 4.9. Stochastic dominance of equilibrium distributions between male and female rural samples**. Simulation results…………………………………………237

Table 4.10. Stochastic dominance of equilibrium distributions between urban and rural samples**. Simulation results…………………………………………238

Table 4.11. Stochastic dominance of equilibrium distributions between male indigenous heads and male non-indigenous heads (according to mother tongue). Simulation results…………………………………………………………239

Table 4.12. Stochastic dominance of equilibrium distributions between male indigenous heads and male non-indigenous heads (according to self-identification). Simulation results……………………………………………………240
List of Figures

From “The mobility implications of the full-risk-insurance hypothesis and measurement error: an application to Peru”:

Figure 2.1. Combination of error correlations and error relative variances which satisfy condition (17) for a given correlation coefficient of the actual data........59

Figure 2.2. Combination of error correlations and error relative variances which satisfy condition (23) for a given correlation coefficient of the actual data........63

Figure 2.3. Combinations of error correlations and error relative variances which satisfy condition (23) for a given correlation coefficient of the actual data; and combinations of error correlations and error relative variance which satisfy condition (24) for a given estimated noise-to-signal ratio.................................64

Figure 3.1. Epanechnikov Kernel Densities of the panel log per capita consumption distributions 1998-1999...83

Figure 3.2. Epanechnikov Kernel Densities of the panel log per capita consumption distributions 1999-2000...84

Figure 3.3. Epanechnikov Kernel Densities of the panel log per capita consumption distributions 2000-2001...84

Figure 4.1 Topographic representation of the non-rejection zones for different layers of non-rejection frequency. 1998-1999...96

Figure 4.2 Topographic representation of the non-rejection zones for different layers of non-rejection frequency. 1999-2000...97

Figure 4.3 Topographic representation of the non-rejection zones for different layers of non-rejection frequency. 2000-2001...97

Figure 4.4 Topographic representation of the non-rejection zones for different layers of non-rejection frequency. Measurement errors modeled as AR(1) 2000-2001...98

Figure 4.5 Topographic representation of the non-rejection zones for different layers of non-rejection frequency. Measurement errors modeled as AR(1) 1999-2001...98

Figure 4.6 Topographic representation of the non-rejection zones for different layers of non-rejection frequency. Measurement errors modeled as AR(1) 1998-2001...99

Figure 4.7 Topographic representation of the non-rejection zones for different layers of non-rejection frequency. Measurement errors modeled as AR(1) 1999-2000...99
Figure 4.8 Topographic representation of the non-rejection zones for different layers of non-rejection frequency. Measurement errors modeled as AR(1) 1998-2000...100

Figure 4.9 Topographic representation of the non-rejection zones for different layers of non-rejection frequency. Measurement errors modeled as AR(1) 1998-1999...100

Figure A.1. Distribution of simulated rank correlation coefficients under the null hypothesis with $\rho_{t,t+1}^x = 0$ and $f = 0.1$ in 1998-1999. (Epanechnikov kernel density)*..101

Figure A.2. Distribution of simulated rank correlation coefficients under the null hypothesis with $\rho_{t,t+1}^x = 0.1$ and $f = 0.3$ in 1999-2000. (Epanechnikov kernel density)...102

Figure A.3. Distribution of simulated rank correlation coefficients under the null hypothesis with $\rho_{t,t+1}^x = -0.1$ and $f = 0.5$ in 2000-2001. (Epanechnikov kernel density)*...103

From “The effect of cohort heterogeneity on comparisons of homogeneity and long-term educational prospects: the case of Peru”

Figure 2.1 Four cases of parent-to-offspring transmission of a welfare attribute..197

Figure 3.1 Mobility of education of urban people born in cities across cohorts...225

Figure 3.2 Mobility of education of rural people born in rural areas across cohorts...225

Figure 3.3 Mobility of education across cohorts: indigenous versus non-indigenous household heads (self-identification)...226

Figure A.1. Equilibrium distributions. Male versus female heads. Pooled data..241

Figure A.2. Equilibrium distributions. Male versus female heads. Restricted data..241

Figure A.3. Equilibrium distributions. Male versus females. Pooled data......242

Figure A.4. Equilibrium distributions. Male versus females. Restricted data..242

Figure A.5. Equilibrium distributions. Urban male versus females. Pooled data..243
Figure A.6. Equilibrium distributions. Urban male versus females. Restricted data

Figure A.7. Equilibrium distributions. Rural male versus females. Pooled data*

Figure A.8. Equilibrium distributions. Rural male versus females. Restricted data*

Figure A.9. Equilibrium distributions. Urban versus rural. Pooled data*

Figure A.10. Equilibrium distributions. Urban versus rural. Restricted data*

Figure A.11. Equilibrium distributions. Indigenous versus non-indigenous heads (mother tongue). Pooled data

Figure A.12. Equilibrium distributions. Indigenous versus non-indigenous heads (mother tongue). Restricted data

Figure A.13. Equilibrium distributions. Indigenous versus non-indigenous heads (self-identification). Pooled data

Figure A.14. Equilibrium distributions. Indigenous versus non-indigenous heads (self-identification). Restricted data
Acknowledgments

I would like to express my gratitude to the people who helped me produce this thesis. Some of these contributions were fundamental, others were complementary; some were academic, others were affectionate, several were both. All of them were significant enough to leave an imprint in me. For all these contributions I feel indebted and extremely grateful.

Firstly, I would like to thank personally my supervisor, Professor Marcel Fafchamps. Having been his student was a privilege and an honour. Marcel provided me with wise guidance, insightful ideas and suggestions, and plentiful motivation. He always had time for me, especially when I needed it the most. Many of the ideas developed in this thesis came from conversations with him and more than once he put me on track to make breakthroughs. He taught me how to write academic research in Economics. The enjoyable meetings with him, his exemplary rectitude as a professional, and his amazing personality also contributed to my formation in a subtle but profoundly meaningful manner.

I thank very much Stefan Dercon, who was my interviewer during the transfer process, providing me with top-quality comments and references at early stages of my research. Stefan also motivated me by being there as a friend for all Development Economics students in Oxford who know him. He has been instrumental in other aspects of my career as well.

I thank Professor Steve Bond who interviewed me with Stefan Dercon and gave me valuable comments. During my masters in Oxford, I had the privilege to be supervised
by Dr Elizabeth Robinson. I owe her so much for her encouragement and guidance at a crucial, initial moment of my graduate studies. Her support since then has been invaluably generous. I am very grateful to her for everything.

Professor Felipe Portocarrero also deserves a heart-felt gesture of gratitude. He mentored me during my time in Peru and I am honoured to have worked with him. He told me to come to Oxford and gave me necessary support to make it. Since then he has been an ever-present figure; his wise teachings resonate in me.

My research during the last three years benefited from the input of many people in and out of Oxford. My friend Cesar Calvo gave advice crucial to my career and answered my questions every time I needed him. My friends Niaz Asadullah and Maria Ana Lugo gave me key references, lots of eye-opening comments, and advice on different matters. She also motivated me to take important steps in my career. Takamitsu Kurita also gave me important references. My friend Patrick Premand made the thesis process better manifold: we studied together, commented on each other’s drafts, motivated each other with good vibes, and enjoyed Oxford together. My friend Shreya Sarawgi also gave me statistics materials and very good references. I thank very much Melissa Dell for reading one of my drafts and for our interesting, enjoyable conversations. Joseph Shapiro provided me with good insights and spot-on references on statistics material. In Greece I met Jhon James Mora with whom we had fruitful conversations. In Montpellier, Alessia Paccagnini read one of my drafts and gave me excellent, relevant comments. I am very grateful to her.

I thank the Department of Statistics in Oxford for their enquiries service for other faculties. Their advice was very useful. During the years, I had e-mail correspondence
with people providing me with comments on their own research which was helpful in itself, but also made me feel more comfortable within the academic community. I thank Buhong Zheng, Erzo Luttmer and John Roemer for that. I thank Gisele Hites, Ruth Vargas Hill and Bob Rijkers for kindly providing me with their own theses. They were very helpful.

An immense gesture of gratitude goes to my dear friend Lorenzo Oimas who helped me secure the datasets. I am grateful to Maximo Torero and Melissa Dell for their data contributions and to officials at Peru’s bureau of statistics who answered my queries.

I acknowledge the financial support of Oriel College’s Herbert and Ilse Frankel Memorial Scholarship, the Department of Economics’ Doctoral Studentship Scheme, and Cesar Calvo who helped me secure work on many occasions.

I acknowledge the emotional support of all my dear friends. Those from St Antony’s and Oriel College, from the masters program, from the Department of Economics; my friends from Latin America, especially my compatriots from Peru, Marco, Oswaldo, Alan and Gonzalo, who have always been there for me, as Cesar was. I am also grateful to my haverim from the Jewish Community, including Rabbi Eli and Freidy Brackman, and Babak Somekh who has also been there for me.

Finally I would like to dedicate this thesis to my beloved family. To my parents, Daniel and Luisa Yalonetzky, and to my uncle Saul Mankevich. Together they gave me strong emotional and financial support. The thesis is also dedicated to my sister and brother-in-law, Romina and Ari Sabbagh, my grandmother Dora Lifschitz, and to the special person I am sharing my life with, Melissa Friedman. I could not have done it without you.
Statement of Ownership and Word Count

Ownership

I am the author of all the chapters of this thesis on which I have worked for the last three years. I acknowledge with immense gratitude the contribution of Professor Marcel Fafchamps. His ideas, suggestions and feedback enabled me to make significant progress in several occasions.

Word Count

This thesis has 273 pages, including references. According to the count of Microsoft Word the thesis contains 51,813 words including references (5,267 words) and footnotes.